PREZENT WAKACYJNY 2006/7
DLA UCZNIÓW GIMNAZJUM
12345 = 2×12 ×345
Ta ostatnia równość jest oczywiście nieprawdziwa, ale chciałam na początku zobaczyć w czym rzecz.abcde = 2×ab ×cde
Czyli:ab000 + cde = 2×ab ×cde
Czyli:ab × 1000 + cde = 2×ab ×cde
Niech x oznacza liczbę dwucyfrową utworzoną z dwóch początkowych cyfr danej liczby pięciocyfrowej: x = ab
Niech y oznacza liczbę trzycyfrową utworzoną z trzech końcowych cyfr danej liczby pięciocyfrowej: y = cde
x × 1000 + y = 2×x ×y
Wyznaczę z tego równania liczbę trzycyfrową y:
2×x ×y= x × 1000 + y
2×x ×y - y= x × 1000
y(2x - 1) = x × 1000
y = | x × 1000 |
2x - 1 |
Ale: Liczby x i 2x - 1 nie mogą mieć wspólnych dzielników różnych od 1, bo 2x - (2x - 1) = 1.
x = ab |
|
Liczba abcde | Sprawdzenie | ||||
1 | 1 (za mało) | ---- | ----- | ----- | |||
5 | 3 (za mało) | ----- | ----- | ----- | |||
25 | 13 | 520 | 13520 | 13520 = 2×13 ×520 | |||
125 | 63 | 504 | 63504 | 63504 = 2×63 ×504 |