LIGA ZADANIOWA UMK W TORUNIU 2007/2008
ZADANIA PRZYGOTOWAWCZE DO ETAPU II
DLA KLAS II GIMNAZJUM
Zadanie 24
Pewna liczba naturalna n przy dzieleniu przez 2001 i 2002 daje tę samą resztę 118. Jaka jest reszta z dzielenia liczby n przez 33?
Rozwiązanie
Mamy sytuację
n = 2001a + 118
n = 2001b + 118
2001a = 2002b
NWD (2001, 2002) = 1 więc liczba a dzieli się przez 2002 , stąd
a = 2002c
gdzie c jest pewną liczba całkowitą.
n = 2001×2002c + 118
2001 dzieli się przez 3, a 2002 dzieli się przez 11 więc 2001×2002c dzieli się przez 33. Stąd reszta z dzielenia liczby n przez 33 jest taka sama co reszta z dzielenia liczby 118 przez 33:
118 = 3×33 + 19
Odpowiedź: Szukana liczba to 19.
Autor: Jakub Szmigiel, Gimnazjum 11 w Toruniu